Introduction: For 2011 the $\mathcal{B M \mathcal { M A }}$ are allowing a 60 s motor run using $3 \times 50 \mathrm{mah}$ S anyo \mathcal{N} icads or 1×70 mah LiPo cell. The propeller options remain the same at $6^{\prime \prime}$ maximum and must be of commercial origins.

Robotbirds 5 and 10 gm brushless motors were tested in a thrustrig alongside ageared Kpaero 5 gm motor, an 11.4 gm 4 - $\mathcal{M a \chi}$ motor and an $X \mathcal{Y} \mathcal{A P O} 5$.Various pitch propellers were used with an RCtronics 70 maf 20C (alleged) battery.

For 2011, the more thrust generated the better, within the limits of battery technology, $20 C$ discharge assumed. In practice, this means finding the motor and propeller match that achieves maximum thrust for 1.4 amps maximum and battery voltage $>3.0 v$ at the end of a 60 s run.

Tests were run from zero to 100% load in steps using the load setting facility of the servo tester.

Test rig

The test motor is mounted on the right of a light forizontal balsa swinging arm. A 3 m w laser tachometer measures propeller speed and a pair of $\mathcal{D V} \mathcal{M}$'s measure volts and amps. Motor thrust is reacted on a gramme scale. An E-S Ky servo tester with pulse width visual display
provides a logic levelinput to a Robotbirds 6aESC. The rig designgives a $5: 1$ mechanical advantage.(gramme scale reading is divided by 5 to improve accuracy and repeatability).
$\underline{\mathcal{N i C a d s} \text { vs LiPo }}$

This data has been published some 18 months ago, but is repeated for completeness to emphasise that the 70 maf LiPo fas almost double the energy content of the 50 maf Sanyo's. Weight comparison is $2.8 \mathrm{gm} \operatorname{LiPo,11gm~} \mathcal{N i c}$ ads.
Recommended battery type should be obvious.

The data show.......

1. The fighest thrust is given by Kpaero 5 gm geared motor (red) with $138 \times 90 \mathrm{~mm}$ Kpaero propeller.. Note that the current draw is close to the 1.4 amp imposed maximum current draw. The next 6est result is the 5 gm direct drive with GWS 6×3 (6fue)
2. Increasing the propeller pitch on the direct drive motor using a GWS 6×5 slowfly (black) was a retrograde step.
3. S wopping the 138×90 propeller for the GWS 6×3 (green) on the 5 gm geared motor failed to achieve the 35 gm thrust performance of the kpaero setup.
$10 \mathrm{gm} / 5 \mathrm{gm}$ motorcomparison direct drive

The figure compares the thrusts of a 5 gm direct drive motor (6 lue), a 5 gm geared motor (red) and a 10 gm direct drive motor (green).

The data show.......

1. By far the fighest thrust is given $6 y$ the $10 g m$ direct drive motor using a relatively unexciting GWS 6×3. Current draw is close to 18 C. This will unload in the air. There is some scope for a more aggressive propeller match (if it can be found) to approach 20C in the air.

Further tests were run with a CAM 5×5, a GWS 6×3.5 and a 6×4 folder cut down from a Potensky 8×4. None of these outperformed the GWS 6×3.

An 11.4 gm motor from 4-Max was tested. This motor was more efficient than the $10 g m$ but peaked out at 1.0 amp or 37 gms thrust and could not match the 43 gms of the 10 gm RB motor. An X $\mathcal{Y} \mathfrak{M o t o r s} \mathcal{A P O} 5$ was also tested. Efficiency was very poor but the battery successfully pulled 1.5 amps or 21.7 C with a voltage of 3.32 .

A simulated 60 sec power run

The 10 gm direct drive motor with the GWS 6×3 was run at 100% load for 60 s .

Thrust is maintained at 46-44 gms throughout the motor run with current draw ranging from 1.27 to 1.22 amps about 18 C. Voltage holds up at 3.3 volts minimum. Propeller speed is maintained at 5600-5474 rev/min over the entire motor run time. At the end of the motor run, only 30% of the batteryenergy has been consumed and the battery recharges OK to 4.2 v .

Closing remarks

1. Constrained by space, the 5 gm Kpaerogeared motor with kpaero $138 \times 90 \mathrm{~mm}$ propeller will provide more thrust than a direct drive 5 gm power unit.
2. The highest thrust, so far, is provided $6 y$ the $\mathcal{R B} 10 g m$ direct drive motor with a GWS 6×3 propeller.
3. This runs about 18 C discharge static.......this will unload in the air, but by fow much? ?

